Abstract
Deep neural networks have yielded immense success in speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks for recommender systems has received a relatively little introspection. Also, different recommendation scenarios have their own issues which creates the need for different approaches for recommendation. Specifically in news recommendation a major problem is that of varying user interests. In this work, we use deep neural networks with attention to tackle the problem of news recommendation. The key factor in user-item based collaborative filtering is to identify the interaction between user and item features. Matrix factorization is one of the most common approaches for identifying this interaction. It maps both the users and the items into a joint latent factor space such that user-item interactions in that space can be modeled as inner products in that space. Some recent work has used deep neural networks with the motive to learn an arbitrary function instead of the inner product that is used for capturing the user-item interaction. However, directly adapting it for the news domain does not seem to be very suitable. This is because of the dynamic nature of news readership where the interests of the users keep changing with time. Hence, it becomes challenging for recommendation systems to model both user preferences as well as account for the interests which keep changing over time. We present a deep neural model, where a non-linear mapping of users and item features are learnt first. For learning a non-linear mapping for the users we use an attention-based recurrent t layer in combination with fully connected layers. For learning the mappings for the items we use only fully connected layers. We then use a ranking based objective function to learn the parameters of the network. We also use the content of the news articles as features for our model. Extensive experiments on a real-world dataset show a significant improvement of our proposed model over the state-of-the-art by 4.7% (Hit Ratio@10). Along with this, we also show the effectiveness of our model to handle the user cold-start and item cold-start problems.