Abstract
The growth of the Internet and telecommunication technology has facilitated remote access. During the last decade, numerous remote user authentication schemes based on dynamic ID have been proposed for the multi-server environment using smart cards. Recently, Shunmuganathan et al. pointed out that Li et al.’s scheme is defenseless in resisting the password guessing attack, stolen smart card attack and forgery attack. Furthermore, they showed the poor repairability and no two-factor security in Li et al.’s scheme. To surmount these security disadvantages, Shunmuganathan et al. proposed a remote user authentication scheme using smart card for multi-server environment and claimed that their scheme is secure and efficient. In this paper, we show that Shunmuganathan et al.’s scheme is also defenseless in resisting the password guessing attack, stolen smart card attack, user impersonation attack, forgery attack, forward secrecy and session key secrecy. Moreover, the two-factor security is also not preserved in their scheme. In our proposed scheme, a user is free to choose his/her login credentials such as user id and password. And also a user can regenerate the password any time. Simultaneously the proposed scheme preserves the merits of Shunmuganathan et al.’s scheme and also provides better functionality and security features, such as mutual authentication, session key agreement and perfect forward secrecy. The security analysis using the widely accepted Burrows–Abadi–Needham logic shows that the proposed scheme provides the mutual authentication proof between a user and a server. Through the rigorous formal and informal security analysis, we show that the proposed scheme is secure against possible known attacks. In addition, we carry out the simulation of the proposed scheme using the most-widely accepted and used Automated Validation of Internet Security Protocols and Applications tool and the simulation results clearly indicate that our scheme is secure.