Abstract
In recent years, the Internet of Things (IoT) enabled drones, also called as unmanned aerial vehicles (UAVs), are widely used in many applications ranging from military to civilian applications, such as wildlife monitoring. Since the drones provide a risk-free as well as low-cost facility in order to quickly and persistently monitor natural circumstances at high spacial temporal resolution, they help in wildlife monitoring research. Due to wireless communication nature, the communication among the deployed drones in their respective flying zones and the IoT smart devices installed in animal bodies, and also among the drones and their respective ground station server (GSS), is susceptible to various passive and active attacks. To mitigate these issues, we propose a public blockchain based access control implementation for wild-life monitoring purpose. The application of both access control and blockchain at the same time not only protects various attacks, but also maintains immutability, transparency as well as decentralization properties. Next, we simulate the proposed security framework for the blockchain part to measure the total computational time needed to add a varied number of blocks in a blockchain and also a varied number of transactions per block. Finally, a practical testbed experiment has been implemented to show the feasibility of the proposed framework. Index Terms—Wildlife monitoring, blockchain, consensus, access control, security, testbed experiments.