Abstract
Collision avoidance is one of the essential pillars of a wheeled robotic system. A wheeled mobile robot (called mobile robot for conciseness henceforth) requires for effective functioning an integrated system of modules for (i) map building,(ii) localization,(iii) exploration,(iv) planning and (v) collision avoidance. Often (i) and (ii) are entailed to be done simultaneously by robots resulting in a vast array of literature under the category SLAM, simultaneous localization and mapping. In this chapter we focus on the aspect of collision avoidance specifically between multiple robots, the remaining themes being too vast to even get a brief mention here. We present a cooperative conflict resolution strategy between multiple robots through a purely velocity control mechanism (where robots do not change their directions) or by a direction control method. The conflict here is in the sense of multiple robots competing for the same space over an overlapping time window. Conflicts occur as robots navigate from one location to another while performing a certain task. Both the control mechanisms attack the conflict resolution problem at three levels, namely (i) individual,(ii) mutual and (iii) tertiary levels. At the individual level a single robot strives to avoid its current conflict without anticipating the conflicting robot to cooperate. At the mutual level a pair of robots experiencing a conflict mutually cooperates to resolve it. We also denote this as mutually cooperative phase or simply cooperative phase succinctly. At tertiary level a set of robots cooperate to avoid one or more conflicts amidst them