Abstract
The world we live in is full of technology and with each passing day the advancement and usage of UAVs increases efficiently. As a result of the many application scenarios, there are some missions where the UAVs are vulnerable to external disruptions, such as a ground station's loss of connectivity, security missions, safety concerns, and delivery-related missions. Therefore, depending on the scenario, this could affect the operations and result in the safe landing of UAVs. Hence, this paper presents a heuristic approach towards safe landing of multi-rotor UAVs in the dynamic environments. The aim of this approach is to detect safe potential landing zones - PLZ, and find out the best one to land in. The PLZ is initially, detected by processing an image through the canny edge algorithm, and then the diameter-area estimation is applied for each region with minimal edges. The spots that have a higher area than the vehicle's clearance are labeled as safe PLZ. Onto the second phase of this approach, the velocities of dynamic obstacles that are moving towards the PLZs are calculated and their time to reach the zones are taken into consideration. The ETA of the UAV is calculated and during the descending of UAV, the dynamic obstacle avoidance is executed. The approach tested on the real-world environments have shown better results from existing work.