Abstract
Instance retrieval (IR) is the problem of retrieving specific instances of a particular object, like a monument, from a collection of images. Currently, the most popular methods for IR use Bag of words (BoW) features for retrieval. However, a prominent problem for IR remains the tendency of BoW based methods to retrieve near-identical images as most relevant results. In this paper, we define diversity in IR as variation of physical properties among most relevant retrieved results for a query image. To achieve this, we propose both an ITML algorithm that re-fashions the BoW feature space into one that appreciates diversity better, and a measure to evaluate diversity in retrieval results for IR applications. Additionally, we also generate 200 hand-labeled images from the Paris dataset, for use in further research in this area. Experiments on the popular Paris dataset show that our method outperforms the standard BoW model …