Abstract
The aim of a local descriptor or a feature descriptor is to efficiently represent the region detected by an interest point operator in a compact format for use in various applications related to matching. The common design principle behind most of the mainstream descriptors like SIFT, GLOH, Shape context etc is to capture the spatial distribution of features using histograms computed over a grid around interest points. Histograms provide compact representation but typically loose the spatial distribution information. In this paper, we propose to use projection-based representation to improve a descriptor’s capacity to capture spatial distribution information while retaining the invariance required. Based on this proposal, two descriptors based on the CS-LBP are introduced. The descriptors have been evaluated against known descriptors on a standard dataset and found to outperform, in most cases, the existing descriptors. The obtained results demonstrate that proposed approach has the advantages of both the statistical robustness of histogram and the capability of the projection based representation to capture spatial information.