Abstract
Capacitive pressure sensors have several advantages in areas such as robotics, automation, aerospace, biomedical and consumer electronics. We present mathematical modelling, finite element analysis (FEA), fabrication and experimental characterization of ultra-low cost and paper-based, touch-mode, flexible capacitive pressure sensor element using Do-It-Yourself (DIY) technology. The pressure sensing element is utilized to design large-area electronics skin for low-cost prosthetic hands. The presented sensor is characterized in normal, transition, touch and saturation modes. The sensor has higher sensitivity and linearity in touch mode operation from 10 to 40 kPa of applied pressure compared to the normal (0 to 8 kPa), transition (8 to 10 kPa) and saturation mode (after 40 kPa) with response time of 15.85 ms. Advantages of the presented sensor are higher sensitivity, linear response, less diaphragm area …